Posted on 2 Comments

Stalls and angle of attack: a very important relationship

The relationship between stalls and airspeed is often misunderstood.   It is not actually the airspeed of the aircraft that will determine when the wing will stall, but rather the angle of attack.

Stall recognition is generally taught with reference to airspeed only.  Students are taught to pull up to stall the aircraft and continue doing so, watching the airspeed bleed off, watching the needle go from the green arc, through the white arc where this ends, and the airspeed at which that aircraft (in that particular configuration) is known to stall.  Instructors drill into us the importance of angle of attack, and that the aircraft can stall at almost any airspeed. In fact, my instructor and I stalled the aircraft at full power settings. It was surprising and intense, and very important to recognize that this can happen.

There is no instrument to show the relationship between angle of attack and airspeed determining stall due to the complex forces that determine when an aircraft will stall, including weight of aircraft, load factor, the aircraft’s center of gravity, and other factors such as altitude, temperature, aerofoil contamination (frost or ice on wings) and turbulence.   The airspeed indicator alone cannot measure when a stall will occour.

Your POH will give you stall speed with flaps up and flaps down configurations, for a certain weight. We learn in ground school that stall speed increases with weight forward center of gravity (which acts like an increase in aircraft weight), load factor (such as in a turn) and when there is surface contamination.  Once you know the basic stall speeds, it is up to you, the pilot, to be able to recognize when you are increasing or decreasing the stall speed.

It’s not the airspeed, it’s angle of attack

A typical lift curve, showing where lift angle is reached, which is about 16 degrees in this example. Image from wikipedia.org
A typical lift curve, showing where lift angle is reached, which is about 16 degrees in this example. Image from wikipedia.org

Angle of attack is the angle at which the relative airflow meets the wing. This is what determines when a wing will stall. It’s important to understand relative wind – this is the way the air flows over the wing – when this is disrupted, air can no longer flow the way it’s designed to over the wing, and lift decreases.  The critical angle of attack is reached when the maximum lift coefficient is obtained, after which lift will drop off when the angle is exceeded, and the aircraft will loose lift. After the critical angle of attack is reached, the aircraft is said to be approaching a stall.

The aircraft will always stall at the same angle of attack, called the critical angle. Many modern jets have an instrument that prevents the pilot from increasing the angle of attack past the critical angle, this is called the angle of attack limiter or alpha limiter.

Dangers of being low and slow

However this type of tool, or similar instrument is not in most general aviation planes. This leads to the pilot having to be very careful in making sure they don’t push their airplanes in into this flight envelope. When is a stall most dangerous? When you are low and slow.  Typically, the base to final turn can be very hazardous, and this is corroborated with the amount of stall-spin accidents that happen during this circuit sequence (for general aviation airplanes).  On this turn, you are low, and your airspeed is decreasing since you are on approach. When you turn, you increase the load on the aircraft, and if you push it into a stall (say, by executing a steep turn) you can enter a deadly stall-spin from which recovery is difficult due to the proximity of the ground.

ICON Aircraft GuageRecently I’ve discovered the aircraft manufacturer Icon Aircraft. This company has created an angle of attack instrument for general aviation airplanes.  This instrument measures angle of attack and presents it to the pilot showing when they are flying within the proper range.  This is a very interesting development that should go a long way into increasing safety.

I recommend watching the video about the concept below. Very cool!

Posted on 1 Comment

The “six pack” flight instruments: pitot-static

Flight instruments on a Cessna 172

Let’s do a review of the six main flight instruments: 

Detail is provided, of course, there is so much more we can add here!  The most important and basic flight instruments have remained the same for a long period of time, and are called the ‘six pack’.  Three of them are connected to the static port system which measures outside barometric pressure and the pitot tube which measures ram pressure.   The other three are gyroscopic.

The Pitot Tube on a Cessna 172
The Pitot Tube on a Cessna 172

The pitot tube, located on the leading edge of the wing, and the atmospheric pressure in the tube is increased by the dynamic pressure due to the forward motion of the aircraft while in flight.  The static pressure port is not affected by turbulence or ram air pressures.

The three instruments connected to the pitot-static system are:

(1) Airspeed Indicator (ASI) – pitot and static source; it measures the difference between the pressure in the pitot tube and the pressure in the static system. When the aircraft is on the ground the two pressures become equal, in motion the pressure difference causes the aneroid capsule inside the indicator to expand, moving the needle on the instrument.

The ASI shows indicated airspeed.  Indicated airspeed can be erroneous because of air density, which depends on pressure and temperature, and position error, which is caused by eddies that are formed when air passes over the wings and struts. This is the uncorrected reading from the dial and calibrated airspeed is the indicated airspeed corrected for position error (and installation error). Equivalent airspeed is the calibrated airspeed corrected for compressibility – this applies mainly to high speed airplanes.  Next we have true airspeed which is calibrated airspeed corrected for pressure and temperature. Roughly, to correct calibrated airspeed we add 2% to the indicated airspeed for every 1000 feet of pressure altitude.  We can gain more accurate readings using our flight computer – the E6B.

(2) Vertical Speed Indicator, static source. Operates on the principle that there is a change of barometric pressure with a change in altitude.  Atmospheric pressure is led into the capsule but slowed by a calibrated leak from entry into the case holding the capsule,  and this pressure differential causes the capsule to expand or compress.  There is a 6-9 second lag before it will indicate the correct rate of climb or descent.

(3) Altimeter, static source. Since pressure varies from place to place and the altimeter set to indicate height above sea level at the departure point may give a false reading after the aircraft has flown some distance.  To correct for this, the altimeter is equipped with a barometric scale (inches of mercury) which allows to set the current altimeter setting. We get this each time we depart our airport and can get it enroute.  If we fly to an airport that has a lower pressure than the one we departed from and we don’t change our altimeter setting, we will read higher than the actual height of the airplane. Temperature differences will also cause erroneous readings since the pressure altimeter is calibrated to indicate true altitude in standard atmospheric conditions.  When the temperature of the air beneath the airplane is colder than standard, the aircraft is lower than indicated, and vice versa for warmer than standard temperatures (higher than altimeter reading) .

Here are what we can expect from a compromised static-port system.

Instrument Pitot Tube Blocked Partially Blocked Static Port Fully Blocked Static Port
Altimeter Not connected Under-read in climb, over-read in descent Freezes
Vertical Speed Indicator Not connected Under-read in climb, less than true rate of descent Freezes at 0
Airspeed Indicator Acts like altimeter. Over-reads in climbs and under-reads in descents Under-read in climb, over-read in descent Under reads in climbs and over reads in descents.

Read about the other 3  instruments that are gyroscopes: the heading indicator, attitude indicator and turn and bank coordinator.

Do you have any other specialty instruments in your aircraft?