Posted on 8 Comments

Learning to Land

On approach for runway 34, CYBW

One of the hardest thing in flying is learning to land.  When I was struggling with the landing, my instructor made me feel better by letting me know this, and saying that she didn’t really “learn” how to land until she was doing her commercial license.  Of course she knew how to to it, but by that she meant that she didn’t really feel fully comfortable until then.

This put a few things into perspective, how long it will take until not only will it feel natural but you will not be so terrified and dry-mouthed every time you do it.  Since my first solo flight, I have really started paying attention how to possibly make the best landing happen consistently.  I haven’t been flying in the circuit much lately, so each flight I only get to do one of these landings so I try to make it as good as possible.

The landing sequence. This plane is about to flare.
The landing sequence. This plane is about to flare.

One of the things that is very apparent is the amount of right rudder needed.  As you cut power to idle, and flare, you are operating the aircraft at very low power settings. Asymmetric thrust will cause the aircraft to want to yaw to the left: recall that the aircraft has left-turning tendencies which cause left yaw. This is actually what I noticed very clearly on my first solo flight, thinking it was the wind that was causing my nose to yaw to the left on landing, my instructor quickly corrected me that it was not using enough right rudder.

Four things will cause left -turning tendency. These are:

1. Torque reaction from engine and propeller

2.  Slipstream causing a corkscrewing effect of air hitting the tail on the right, yawing the aircraft to the left.

3.  Gyroscopic action of the propeller, the propeller is a gyroscope and tries to “spin” the aircraft the opposite way.

4.  Asymmetrical loading of the propeller at high nose attitudes.

On landing, asymmetric thrust causes the left yaw.  When you touch the ground, be prepared to add even more right rudder. The engine torque will cause the left wheel to carry slightly more weight than the right, increasing it’s drag and causing even more yaw to the left.

So how can you strive to make each landing perfect? I’ve made a list of steps that I think are very important to note:

1.  Check winds. When flying in the downwind leg, when on final, or whenever you get a chance note the windsock so you know what winds you will be experiencing on the ground and on your final approach. Will you have a crosswind?

2.    Approach at a constant airspeed for your configuration (whether using flaps or not), do not “chase” the airspeed: that is, do not focus your attention on the airspeed indicator and try to correct deviations by switching attitudes.  Establish your airspeed well in advance on final, note how the horizon looks when you have reached the proper airspeed, and keep it there. Once you have your airplane in the right attitude, keep it there.

3.   Pick a spot on the runway. When you stare at this spot, this is where you will flare. It also allows you to break down your desired touchdown spot and keep you from focusing on the entire runway.

4.  Flare 5-9 meters (15 to 30 feet) from the ground.  Over time, you will “sense” where this point is. I learned that to recognize this point is to when the movement of the ground suddenly becomes very apparent, the whole landing area seems to expand, and the point where the ground seems to be coming up so rapidly that something must be done about it.

5.  Once you flare, wait for the sink.  You are trying to bleed off airspeed.  Once you feel the sink, pull back more, just don’t pull back more before you feel the sink. This will cause the aircraft to balloon – gain lift – and the high nose attitude can cause you to stall when still too high above the ground resulting in a hard landing.   You need to cover up the runway with the nose of the aircraft to get the proper high nose landing attitude.  It will feel uncomfortable at first – it did for me.  This will allow you to avoid touching down with your nose gear, or having a ‘flat’ (three wheel) landing, which increases the risk of wheelbarrow. Pull back slightly each time you feel a sink, this will allow you to check your rate of descent until all flying speed is lost and you can touch the runway as lightly as possible.

6. Get in the habit of keeping your hand on the throttle throughout the landing. If something happens, for example if the landing is not going well and you need to overshoot or if there is something else wrong and you require application of power, the time to get this power if your hand was not on the throttle is too long.

There are four different kinds of landings:

  1. Normal landing
  2. Cross-wind landing; where wind inputs will be needed
  3. Short field landing, and
  4. Soft field landing.

We learn each landing and we practice all of them until they present no difficulty.

Posted on 1 Comment

Slow Flight – more detail on slow flight techniques

I talked with my instructor last night and he brought up a few very good points about slow flight.

In my post about slow flight in the Cessna 172 I wrote that there are five signs that we can identify we are in slow flight;

  1. Stall horn cutting in and out
  2. low airspeed
  3. high nose attitude
  4. high power settings
  5. sloppy aileron control

But we can extend these concepts to some of the other flight surfaces.  What happens to the rudder and elevator? We know that because of a nose high attitude we are pushing the boundary layer of laminar and turbulent airflow further up the wings – hence the wings receive less smooth, laminar airflow and are subject to buffeting from the turbulent air.  This renders the ailerons sluggish and slow.

But how does this effect the tail of the aircraft?

Torque and Asymmetric Thrust

Torque causes left turning tendency. Image Courtesy of flightlearnings.com
Torque causes left turning tendency. Image Courtesy of flightlearnings.com

Recall that because of torque the aircraft wants to spin counterclockwise. This is because the propeller spins clockwise (when we are in the cockpit) and the airplane is a gyroscope – this tendency is explained by Newton’s third law.  Most aircraft are designed in a way to anticipate this, so in level flight, for example, many are designed to give more lift to the wing that is being forced downward. Torque means that the plane has a left turning tendency because more force is applied to left wing than the other. But this is only for level flight. When the aircraft is out of level flight, such as a take-off attitude or nose high attitude that we experience in slow flight, the aircraft will want to turn to the left. Hence, this is another effect on controls of slow flight.

Asymmetric thrust also means that the descending blade has a greater angle of attack than the ascending blade.  This gives more lift to the right side of the propeller (as seen from the pilots perspective) and a yaw to the left.  This happens during high power settings and in high angles of attack – just like in slow flight.  In level flight, both propeller blades meet the relative airflow equally (again, the thrust issue is anticipated in the design of the propeller) and they produce equal thrust, and no left yaw.

In addition, we also talked about why we need to learn slow flight. We are not actually in slow flight on approach and takeoff, but we are very close. We do not want to be in slow flight during these maneuvers, and want to be able to recognize when we are in too close. The airplane is no fun in slow flight – the ailerons are sluggish, the nose is high so our visibility is restricted, the engine is at high power settings and very loud. So the whole point of learning about slow flight is to avoid it.  It is not a comfortable flying experience.  Yesterday I learned how to do a slow flight with almost full power settings and full flaps. It was awkward flying it in this configuration.

So, another way we know we are in slow flight is due to (6) left yaw tendencies requiring use of right rudder to correct. This will be the sixth way we can identify we are in slow flight.